Test Report No. 10-001283-PB01-K23-09-en-02

Date of report	10 June 2011
Translation date	10 June 2011

Client	SENOPLAST Klepsch & Co. GmbH Wilhelm-Klepsch-Str. 1			
	5721 Piesendorf Austria			
Assignment	Climate cycling test of one (outdoor) face of VERPAN door panels			
Object	Two VERPAN door panels with composite surface made up of different substrate materials (HI ABS sheets and HI ABS/PC Blend sheets with UV stabilised design face layer)			
Contents	 Order Object Procedure Results Summary 			
	of ift test documents Annex 1 (2 pages)			

1 Order

The company SENOPLAST Klepsch & Co. GmbH, 5721 Piesendorf commissioned the **ift** Rosenheim to expose to alternating climate cycles the outdoor faces of two door panels, manufactured by VERPAN KOURTOGLOU S.A., Veria, Greece, with composite surface made up of different substrate materials, such as HI ABS sheets and HI ABS/PC Blend sheets with UV stabilised design face layer.

The objective was to detect the formation of cracks in the surface structure, in particular at the stress points of the profile geometry, when exposed to climate cycles.

2 Object

Object of testing were two VERPAN door panel variants of highest quality with blockboard core and ABS as well as ABS/PC blend surface profile compositions. The referring door panel surface was produced with senosan A1350D EG and senosan C1350D EG polymer sheet and Renolit wood decor film. Annexes 1 and 2 contain the descriptions of Variant 1 and Variant 2, respectively. Fig. 1 shows the mounted test specimens. Fig. 2 shows the detailed design of the two door surfaces.

Fig. 1 The two test specimens

Fig. 2 Details of geometries

The description is based on inspection of the test specimen at **ift**. Item designations/numbers as well as material specifications were given by the client.

3 Procedure

3.1 Sampling

The VERPAN door panel samples were selected and produced by the client.

Number	2
Delivered on	09.09.2010
Registration number	28800

3.2 Methods

Basis	
EN 1279	Glass in Building - Insulating glass units
	moisture penetration
Deviation	Upon request by the client, the test cycle was modified. Table 1 contains a description.

3.3 Measuring and test equipment

Climate cycling	Device number 20531
Standard climate chamber	Device number 22040

3.4 Testing

Date/Period	from September to December 2010
Testing personnel	Stefan Hehn, DiplIng. (FH)

Table 1 documents the cycle settings and its subdivision into different stages. For stage 2 it was agreed with the client, after 50% of the respective cycle, to decrease the cycle temperature to -40 °C. For technical reasons this temperature was not constantly maintained for the overall duration of 2 hours, but as presented in Fig. 4. Fig. 3 shows the cycling of stage 1.

Test cycle	Cycles	Duration	Sequence
		2h 21 min	Cooling from 23 ℃ to -30 ℃
		2h	Storage at -30 °C
Stago 1	28	4h	Heating from -30℃ to 60℃
Slage		2h	Storage at 60 ℃
		1h 39 min	Cooling from 60 ℃ to 23 ℃
		2h 21 min	Cooling from 23 ℃ to -30 ℃
		2h	Storage at -30 °C
	14	4h	Heating from -30℃ to 60℃
		2h	Storage at 60 ℃
Stage 2		1h 39 min	Cooling from 60 ℃ to 23 ℃
Stage 2	14	2h 21 min	Cooling from 23 ℃ to -40 ℃
		2h	Storage at -40 °C
		4h	Heating from -40℃ to 60℃
		2h	Storage at 60 ℃
		1h 39 min	Cooling from 60 ℃ to 23 ℃
		2h 21 min	Cooling from 23 ℃ to -40 ℃
		2h	Storage at -40 °C
Stage 3	28	4h	Heating from -40℃ to 60℃
		2h	Storage at 60 ℃
		1h 39 min	Cooling from 60 ℃ to 23 ℃

rable i nepresentation of test cycl	Table 1	Representation	of test cycle
-------------------------------------	---------	----------------	---------------

Fig. 3 Details of cycling - stage 1

Fig. 4 Details of cycling - stage 3

4 Results

Both the exposed and the unexposed face (internal/room side) were checked for crack formation. The central deformation of the VERPAN door panels was measured on the exposed face with deflection oriented towards the unexposed face. Table 2 to table 4 sum up the results obtained for the individual variants.

		Crack formation and deformation						
Variant Position		4 cycles	8 cycles	16 cycl	16 cycles		28 cycles	
	03.11.2010	03.11.2010 05.11.2010 09.11.2010 15.11.2010		09.11.2010		10		
		Cracks	Cracks	Deformation [mm]	Cracks	Deformation [mm]	Cracks	
	Тор	none	none	-15.59	none		none	
1	Centre	none	none		-15.59 none	-17.02	none	
	Bottom	none	none		none		none	
	Тор	none	none	-10.57	none		none	
2	Centre	none	none		none	-13.58	none	
	Bottom	none	none		none		none	

 Table 2
 Results of test cycle - stage 1

Table 3Results of test cycle - stage 2

		Crack formation and deformation				
Variant	Position	14 cycles		28 cycles		
	FUSILION	22.11.2010		29.11.2010		
		Deformation [mm]	Cracks	Deformation [mm]	Cracks	
	Тор	o <u>re</u> -16.88	none	-16.41	none	
1	Centre		none		none	
	Bottom		none		none	
	Тор		none		none	
2	Centre	-11.75	none	-11.39	none	
	Bottom	-	none		none	

Table 4Results of test cycle - stage 3

		Crack formation and deformation				
Variant	Desition	14 cycles		28 cycles		
	FUSILION	06.12.2010		13.12.2010		
		Deformation [mm]	Cracks	Deformation [mm]	Cracks	
	Тор	-16.23	none	-16.48	none	
1	Centre		none		none	
	Bottom		none		none	
	Тор		none		none	
2	Centre	-11.74	none	-11.77	none	
	Bottom		none		none	

5 Summary

After 84 cycles and approx. 6 weeks of climate cycling, no cracks could be detected on the composite surface material of the VERPAN door panels, made out of senosan A1350D EG and Senosan C1350D EG products with Renolit design face layer.

The results of exposure to climate cycling refer exclusively to the test specimens and profile geometries depicted in Figure 1 and Figure 2.

The results obtained do not allow any statements to be made on the suitability of the surface material if used for different profile geometries, except for those tested.

5.1 Validity of test results

The values mentioned in this test report refer solely to the objects described and tested under Section 2.

6 Conditions and Guidance on the use of ift test documents

The enclosed **ift** leaflet "Conditions and Guidance on the Use of **ift** Test Documents" contains the rules for using the test reports.

ift Rosenheim 10 June 2011

Dr. Ing. Odette Moarcas Product engineer Building Materials & Semi-finished Products

Stefan Hehn, Dipl.-Ing. (FH) Test engineer Materials Testing

REF. 9102-1

senosan

TECHNISCHES DATENBLATT	AUSGABE: 2	DATUM: 09-12-2007	file: A1350D_EG_D.doc	

KONSTRUKTION:

Mehrschichtverbund mit einem Trager aus HI-ABS und einer UV-stabilisierten dekorativen Deckschicht, Die Plattennickseite ist mit easyglide^e ausgestatiet.

CHARAKTERISTIKA		EINHEIT WERT	TESTMETHODE			
			ISO	DIN	ASTM	
Spezifisches Gewicht*)		g/cm²	1,08	1183	53 479	
Zag E – Modul Streckspannung Bruchdebnung		MPa MPa %	1700 30 75	527 527 527		
Charpy Schlagzähigkeit Charpy Schlagzähigkeit Charpy Kerbschlagzähigkeit	(23°C) (-30°C) (23°C) (-30°C) (23°C)	kJ/m² kJ/m² kJ/m² kJ/m²	kain Bruch 70% kein Br. 20	179/tfn 179/tfn 179/1ep 179/1ep 179/1epA		
Durchstoßenergie	J		-	6603-2		
Vical 8/50 HDT/8	50N 1,82 MP≘	℃ ℃	90 -	306 75		
Thermoformen Temperatur Beroich		°C	150 - 190			
Verarbeitungsschwindung ^w		%	0,3-0,7			
Brandverhalten ")			HB	1210		U194
Sonstiges			dekorative Ober	fläche		

Die technischen Charakteristika wurden am Halbzaug armittelt. Grenzwerte für künftige Produktionen können aus diesen Ergebnissen nicht entnommen, und daher zu diesem Zeitpunkt noch nicht endgültig definiert werden.

 $^\circ)$ getestet ann verwendeten Rohstoff (natur) welcher bei diesem Produkt eingesetzt wird $^{*\circ})$ Hängt stark vom Tiefziehprozess ab, deshalb nur ein grober Richtvert

Für die ordnungsgemäße Verwendung von Produkten libernimmt Senoplast keinerlei Haftung und Verpflichtung (alle Rechte vorbehalten). Dieses Datenblatt wurde nach bestem Wissen und Gewissen erarbeitet und beziehl sich auf unsere heutigen Kenntnisse und Erfahrungen. Änderungen vorbehalten.

				C qualifysush
Sumical New York, Nather	Tvatar - 40,720484791440	Euroverberdung:	Geochilleruben:	919070-2009 to 2009 to 2007
Wijge Kepah Sir, I A Statiwesi des	Pari+13(2):5(383) A voicementgleserementen	Raffeleszteren, Kyrzen B. 7.35117 (TC: 160/543) Sentenye: Spekasec 3L2: 2040-170, 20505	Albeste Report, Garter Mayed Water Förner, Devrinant im Aufheitschil	新闻公
www.acrop.ust.err	Enternetive Pur-mail- Address	ne čer anišeno - Renaŭ diz V-1, 6 Salzburg 1953 36-7	USAR AT SHESHS DVP 212536	Anton an

ROSENHEIM

REF. 8102-2

KONSTRUKTION:

senosan		C1350D	EG	
TECHNISCHES DATENBLATT	AUSGABE:01	DATUM: 21-08-07	C1350D-EG_D.doc	

Mehrschichtverbund mit einem Trägen aus hochschlagzähern, hochwärmeformbeständigern ABS-PC Blend und einer UV-stabilisierten dekorativen Deckschicht. Die Platienrückseile ist mit easyglide" suspestattet

		ENUEIT	MEDT	TESTMETHODE		
CHARARTERISTINA:			ISO	DIN	ASTM	
Spozifisches Gewicht		g/cmª	1,12	1183	53 479	
Zug E – Modul		MPa	2000	527		
Streckspannung		MPa	42	527		1
Bruchdehnung		35	50	527		
Charpy Schlegzähigkeit	(23°C)	kJ/m²	kein Bruch	179/1fn		ĺ
	(-30°C)	kJ/m²	-	179/1fn		
Charpy Schlagzähigkeit	(23°C)	kJ/m²	35	179/1ep		
	(-30°C)	kJ/m²	-	179/1ep		
Charpy Kerbschlagzähigkeil	(23°C)	kJ/m²	30	179/1epA		
Durchstoßenergie	J			0 603-2		
Vicat B/50	50N	°C	120	306		
HDT/B	1,82 MPa	°C	105	75		
Thermoformen		°C	160 - 200			
Temperatur Bereich		-				
Verarbeitungsschwindung**		%	0,6 ~ 0,8			
Brandverhalten ^{*)}			НВ	1210		UL94
Sonsliges		dekorative	Oberfläche (geora	agt in Holzstruk	tur)	

Die technischen Charakteristika wurden am Halbzeug ermittelt, Grenzwerte für künftige Produktionen können aus diesen Ergebnissen nicht entnommen, und daher zu diesem Zeitpunkt noch nicht endgültig definiert werden.

") getestet am verwendeten Rohstoff (natur) welcher bei diesem Produkt dingesetzt wird. ") hängt stark vom Tiefziehprozess ab, deshalb nur ein grober Richtwert.

Für die ordnungsgemäße Verwendung von Produkten übernimmt Senaptast keinenel Haftung und Verpflichtung (alle Rechte vorbehalten). Dieses Dalenblatt wurde nach beslem Wissen und Gewissen erarbeitet und bezieht sich auf unsere heutigen Kenntnisse und Erfahrungen, Änderungen vorbehalten.

				💽 qualityausria
Syntophica Physical III Contraction Millionis Glassific Art, (A Britz Frankrin Mill	prieto - 465 (2002), 72 (201) Fact 445 (1640), 75 42 o mail per vangter opticitier	Bark-anandaray kadeaanalaray Sayta (SL2 % H2810) (C12940) Saktoya Sayta Sayta (SL2 2000-1012) 22500)	Cupit alsofensi Wilselm Kastern Caras Kappen Walar Karast Bernardisa Padaisasi	STRAFTS AND
Ver.201./dl./01	ta fall, rg. and, Pervardent - G., tablade	n de la Suc "PHESSIZY" JC Saldurg HISS 5447	UD-H: ATUSR 7550 - DVR: CLIPERS	ATLA: PERM
Park-sellala Jawa	THE COMPLETE AND	THE MARK TRADUCTORY AND TRADITION OF	ALTER-ADD STOTE OF CASE	